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Correlations of eigenvectors for non-Hermitian random-matrix models
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We establish a general relation between the diagonal correlator of eigenvectors and the spectral Green’s
function for non-Hermitian random-matrix models in the lafgdimit. We apply this result to a number of
non-Hermitian random-matrix models and show that the outcome is in good agreement with numerical results.
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[. INTRODUCTION where at large coupling&trong dissipationthe eigenvalue
distribution splits into two disconnected islands, reflecting on
Recently, a number of new results for non-Hermitianthe separation of time scalgkl,12. One island corresponds
random-matrix NHRM) ensembles were obtaingsee, e.g., 10 short-lived resonances, while the other corresponds to
[1-5] and references thergjmreflecting on the rapidly grow- ong-lived (almost classicaltrapped statefl3]. It is known
ing interest in properties of NHRM in several areas of phstn this case that the reorganization of the eigenvalues is fol-
ics. In a recent papd6], Chalker and Mehlig have pointed lowed by some reorganization of the eigenvectprs In
out the existence of remarkable correlations between left angarticular, the norm of the right states is sensitive to the
right eigenvectors associated with pairs of eigenvalues lyinglistribution of resonances].
close in the complex plane. Such effects do not exist for In Sec. I, we introduce the notations and summarize the
Hermitian (more generally normalrandom-matrix models, Mmain results for the eigenvector correlators in the case of
since in this case the left and right eigenvectors coincideGinibre’s ensembl¢8], as established recently by Chalker
Some observables related to the eigenvector properties @nd Mehlig[6]. In Sec. Ill, we present our main result and
non-Hermitian random-matrix models have been introduce@pply it to several NHRM models with direct comparison to
and studied numerically ifi7]. Chalker and Mehlig6] ob- numerical results. Our analysis relies on novel techniques for
tained analytical formulagn the largeN limit, whereN is ~ NHRM models discussed by some of 4. A summary of
the size of the NHRMfor correlations between left and right our results is given in Sec. IV, and a number of technical
eigenvectors in the case of Ginibre’s enseniBleHowever,  details can be found in the Appendixes.
an efficient calculational scheme for the simpléstd per-
haps physically more transpargmne-point functionO(z) II. GINIBRE'S MATRIX MODEL
was lacking. In this paper we prove a simple relation stating ] )
that the correlator between left and right eigenvectors corre- Ginibre [8] has introduced a Gaussian ensemble of gen-
sponding to the same eigenvalue is exactly equal, in theral compk_e_x matricedl X N, i.e., matrices distributed with
largeN limit, to the square of the off-diagonal one-point the probability
Green'’s functiorf4] for non-Hermitian eigenvalues. The lat-
ter is readily calculable for a wide variety of NHRM en- P(M)dM~ exp(—N Tr M MT)dM 1)
sembles. We illustrate our observation in a number of o
NHRM models and show that it agrees with numerical cal-giving nonvanishing cumulantéM pM,,)=1/N. The ei-
culations. genvalues are uniformly distributed on a unit disk centered at
The present results can be used to study the interplathe origin of the complex plane. In Appendix B, we provide
between reorganization of the left and right eigenvectors and short derivation of this result and others usiimgatrix-
structural changes in the complex spectrum. In the simplestalued Blue’s functions[4,5]. Since the matrices are com-
non-Hermitian model—Ginibre’s ensembler generaliza- plex (non-Hermitian, there exists a biorthogonal set of right
tions thereof 9,10))—the density of complex eigenvalues is (R) and left(L) eigenvectors, so that
constant, filling uniformly the circléellipse in the complex
plane. This model and its variants do not have external pa-
rameters, which could induce structural changgshase MZ% Na|Ra)(Lal,
changes’] in the average eigenvalue distribution, e.g., the
changes from simply to multiply connected domain of eigen-
values. In order to study these more complex phenomena one M= 2 Yb||-b><Rb|i
has to consider, e.g., the model for open chaotic scattering, b
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where(L,|Rp) = 8a,. Chalker and Mehlid6] have studied LF LF
the following eigenvector correlators: 0g | ] 08
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whereO,,=(L,|L,){Rp|Ra). The main results of their paper  FIG. 1. Eigenvector correlatdd(z=0+iy), generated from an
are exact expressions f@(z,w) and forO(z) in the case of elliptic ensemble of % 10° matrices of size 2Qcrossel an en-
Ginibre’s ensemble. del>1,|z—w| #0, wherezw are ly- semble of 18 matrices of size 4@starsg and size 10qboxes ver-

ing within the unit circle sus the analytical correlator GgqGqq, for 7=0.5 (left) and 7
=0.7 (right).
1 1-zw
O(zw)=- ) lz—w|* @ where 1y is the N-dimensional identity matrix and) de-
notes the averaging over the pertinent ensemble of random
For |z—w|—0, matricesM. In comparison to the original woild], we have
chosen here purely imaginary infinitesimal values in the off-
N2 1—|z|? diagonal block. This way guarantees that the mathematical
O(Z,W) micro= — ? |w|4 [1—(1+]|w|?)exp—|w]|?)], operations performed in the proof of HJ) are well-defined.

The result(7) follows from the more general formul@11)
) and the assumption that no subtleties arise in the factoriza-

where Z=(z+w)/2 and o= N(z—w). The diagonal cor- tion theorem when interchanging the limild— and e
relator reads —0 (cf. Appendix A.
The spectral density follows from Gauss’ 1dd0],

N
0(2)= —(1-|z?). ©

1 _
i i i V(Z! ): —ﬁ;gqq(Z,Z), (10)
Whereas the calculation of the “wide” eigenvector correla- m
tors O(z,w) [like Eq. (4)] in many cases of NHRM is

straightforward, using, €.g. non,—’He_rmitian diagrammatics, pich js the distribution of eigenvalues afl. For Hermitian
[4], the calculation of the “close” eigenvector correlators M, Eq. (10) can be nonzero only on the real axis. &s

O(”Z_.W)mlicmdaTd the Qiagpnal correhlat0|@(f) . is tlecrlmi_- —0, the block structure decouples, and we are left with the
cally Involved. n.prgct_lce, It seer_nst at exp icit calcu atlonsoriginal resolvent. For— +i0, the latter is just a measure-
in the microscopic limit are possible only in the cases Wher}nent of the real eigenvalue distribution

For non-HermitianM, ase— 0, the block structure does
%hot decouple, leading to a nonholomorphic resolvent for cer-
tain two-dimensional domains on taglane. For more tech-
nical details we refer to the original wofk], or recent re-
views [14,15. Similar constructions have been proposed
Ill. FORMULA AND RESULTS recenﬂy |n[5,16]
The right-hand side of the relatidid) is usually given by
a simple analytical formula. Technically, the most efficient
N way of calculating the off-diagonal components of the
O(2)= = —GqqYqq - (7) Green'’s functions is to use the generalized Blue’s function
™ technique[4,5]. In Appendix B we provide a pedagogical
derivation of some of the results below; for others we refer to
the original papers.
For Ginibre’s ensemble we immediately get Appendix

for the diagonal eigenvector correlato(z) in terms of the
spectral one-point Green’s function.

The main result of this paper reads

Here G,q and Gy, are off-diagonal elements of the general-
ized (2X2) spectral Green’s functiog@ [4],

_ B
o ( Gag gqq) o
Yag Yaa; N \
The elements,, are defined as trac€k, = (1/N)Tr \Gap, Of O(Z)ginibre= ~ E( NZZ™ 1)2:E(1_ 121%) (1D

the NX N blocks of the generalized resolvei],

. Qqq @qﬁ z—-M el \ 7! in agreement with Chalker and Mehli@]. For the elliptic
=| . . | = L 5 4 , (9 ensembld9,10], using the off-diagonal elements from Ap-
Yaa  Yaa, tely 2= M pendix B, the diagonal correlator reads
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a=2,y=0 FIG. 2. “Ginibre+deterministic” eigenvector

correlatorO(z=0+iy), generated from an en-
semble of 18 matrices of size 6(crossesversus
the analytical correlator—GqqGqq, at a=0.5
(left), a=1 (cente, and the correlato©(z=x
e : + +i0) ata=2 (right).

1 Finally, we consider the case of open chaotic scattering.
—2[(1—7-2)2 As an illustration we choose the classical result of Haake,

N
O(2) eliptic=— >
m(1-19) Sommers, and co-workerfl2], based on the Mahaux-

Weidenmiier [11] microscopic picture for nuclear reactions.
In brief, the model is generically described by a non-

. . Hermitian Hamiltonian of the form
In Fig. 1, we present numerical results generated from com-

puter simulation of eigenvectors for the elliptic ensemble H—igVV' (14)
with 7=0.5 and7r=0.7 and different size of the matrin,

versus the analytical predictid2). The results are satisfac- whereH is a random Gaussiaforthogonal Nx N matrix,
tory. The figure provides also a rough estimation of finite-yhile v is anNx M random matri{12]. HereN is a number
size effects. We note that numerical simulations of eigenvecyt discrete states arid <N is a number of the continua. The
tor correlations are time consuming, hence the utility of theygdel was solve@l12] in the limit N— o, M—o, m=M/N
result (7), where the right-hand side is straightforward 1o fixed. Using the results from Blue’s function techniquet

calculate. _ ~ Appendix B, we predict the analytical behavior for the cor-
The models considered above have constant density ¢gjatorO(z) for this model as

complex eigenvalues, and the domain of eigenvalues is sim-

ply connectedcircle or ellipsg. Below, we consider a toy N
model, where the domain could split into two disconnected O(2)= p
domains at some critical value of the external parameter.

Also the distribution of eigenvalues is nonuniform. The sim-yyith z=x+iy. In Fig. 3 we compare this result to a numeri-
plest non-Hermitian model of this kind is Ginibre’s random caly generated ensemble of eigenvectors. We would like to
Hamiltonian plus a two-level deterministic Hamiltonian, note large finite-size effects at the edges of the islands.

this model was first considered by Feinberg and Zee, usingan generate structural changes in the distribution of eigen-
their hermitization metho@5].) Using the addition law for vajyes, it is interesting to study whether the splitting of the
the generalized Blue's function, we easily obtain all the com+isjands” is accompanied by some distinct behavior of the
ponents of the matrix-valued Green's functi@ricf. Appen-  eigenvector correlators.

dix B). In Fig. 4 we plot the analytical resull5), normalized by

Using the relatior(7), we predict the spectral density(ZE) (cf. Appendix B, as a function of

N x andy, wherez=x+iy. For the case considered hem (
0(2)g+p=— ;{|z|2+a2—%[1+ V1+4a%(z+2)%]}.

—(1+ 7)|z|*+ 27 Rez?]. (12

0 . .

(13 . 10 g 50 |
We note that the valua=1 is the critical one, when the g 102k N ] g
single island of eigenvalues splits into two. Numerical simu- & o B

lations for this ensemble are shown in Fig. 2. The solid line 10
is the analytical result, the crosses are the numerical result
calculated for the line=0+iy. The diagonal eigenvector
correlatorsO(z) inside the islands follow the distribution
determined by the off-diagonal components for the spectral
Green’s function. We also note that the eigenvector cor—%
relator follows precisely the boundary shape of the eigenval-§
ues. This is expected, since the conditigh/=0 deter-  *
mines[4] the regions in the complex plane separating the
holomorphic and nonholomorphic components of the spec-
tral Green's functionThe shape of the eigenvalue domains
for NHRM models can be inferred from associated Hermit- FIG. 3. Scattering model eigenvector correla@(z=0+iy)
ian models using conformal mappifg]. This points to yet  generated from an ensemble of ¥fatrices of size 6(crossesand
another relationship between the eigenvalues and eigenveef size 120(boxes with m=0.25, versus the analytical correlator
tors of Hermitian and non-Hermitian models. —GqqYqq. at different values of the coupling constant

n O(z)/N
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APPENDIX A: PROOF OF EQ. (7)

We prove first the following representation fox(z):

—

Iim<Tr _6 Tr— € >
0\ (Z=M)(z-MN+e (z—=MN(z-M)+¢€

g 0.5
g
=9 =aNO(2). (A1)
y Below we use TrlrA=IndetA, and the fact thaim can be
_ _ _ diagonalized by anonunitary transformationU, U~*MU
FIG. 4. Three-dimensional plots of the analytical results for the — diag(\q, . .. ). IntroducingV:U_lu_” we get

eigenvector correlato©(z), normalized by the spectral density

v(z,;), vs x andy for different couplingsg in the case of open

chaotic scattering. €

" (z— M) (z—= M)+ €2

=0.25), the value of the critical coupling = 4.44.[Gen- 1 d o

erally, g%;= (1—3/m) 3 [12].] We observe a strong reorga- =5 gendetl(z= ) Vi(z=ro+ €*Vic]
nization in the distribution of the average “norm” of eigen- €

vectors in the vicinity of the critical coupling. =1o_Indef---]. (A2)

We have not taken up in this paper the issue of wide
eigenvector correlator®©(z,w). For the cases considered Using this representation, we note ti@a(z) is zero in the
here, these correlators are readily constructed using th@niting procedure, unlesg is close to anysay\;) of the
NHRM diagrammatic Bethe-Salpeter equatipaf as noted eigenvalues of\. If this happens, we use the parametriza-
by Chalker and Mehlig6]. In most cases, however, the re- tion z—\ ;= eu exp(¢) with u~0O(1). Of course we get ad-
sulting final formulas are rather lengthy. We note that thegitional (similar) contributions wherr is close to the other
knowledge ofO(z,w) in the regimez—w~O(1) does not ejgenvalues\;. For notational simplicity we will now con-
suffice to determin®©(z) through the sum rulei$] originat-  sider only the case of;, adding the remaining contributions
ing from the biorthogonality of the left/right eigenvectors. in Eq. (A7).
Hence the relevance of the present investigation. Using Laplace’s expansion for the first row of the deter-

minant in Eq.(A2), we arrive in thee—0 limit,

IV. SUMMARY 1
1 —
We have established a relation between the diagonal cor- 20cIndef-- ']_; detw, (A3)
relator of eigenvectors and the off-diagonal elements of the 1+ uzm
11 1

one-point spectral Green’s function for general ensembles of
NHRM models. We have appplied this result to a number of ) ] - .
NHRM models and checked its validity against numericallyWith Wi being the matrix £—\;)Vix(z— \\) without the first
generated results. Our observation accounts for part of theow and column and W) 1x+1=(Wp)ik, (W2)1x=(z
eigenvector correlations established recently by a number oifk)vlk, (Wa);i 1= (z—\;)Vig, and Wy)13=Vy;.
authors[6,7]. Our result generalizes to non-Hermitian en-  From Laplace’s expansion
sembles with real, complex, or quaternionic components, as
well as non-Hermitian ensembles with additional symmetry _
(e.g., chiral NHRM. In this last case, however, non- detw,=detV’ [] (z—Ar)(z—\),
. . . . . i=2N
Hermitian diagrammatic techniques have to be used instead
of the versatile method of Blue’s functions.
Finally, we point out thg possibility of relatingl the eiggn— detw, = detV H (Z—M)(?—ri),
vector correlators to the eigenvalue correlators in the micro- i=2N
scopic limit. This issue and others will be discussed else-
where. the ratio of the determinants dé&t /detW, is simply
(V™ 1H;. In the aboveV' is the minor ofV left after cross-
ing out the first row and first column. In this way we obtain

(A4)
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The determinant corresponding to the second trace in Edgq. (Al) is more general than the relatigr), and could be

(A1), with (z— M) and — .M T) interchanged, is obtained Used as a starting point for a systematic study of finite-size
by substitutingV—V~! and hence is given by exactly the effects or microscopic limit. _ _
same formula. To complete the proof of relatiof¥), we observe that, in
Therefore, the largeN limit, we could use the factorization theorem,
such that the left-hand side of E@\1) splits into the product

- of averages
Z<af Indet[---]d.Indet[---])

€ €
Tr Tr
Y ! : < 2= M2+ |z—M|2+eZ>
2
1+uzv (V™1 ) T < T < (A12)
=(Tr r .
we o |12— M|2+ €2 |z— M|?+ €2
€0 2) . Below we will give some heuristic arguments for the validity
= (m&N(z=N)V1(V )1, (A6)  of factorization in this context. However, a full proof would

. . require a careful analysis of the interplay between the two
Wh(ezr)e we used thezz regresegtg\tlon for the complex Dirac deltg i« N 00 ande—0. We will not do this here but remark
w8 (2) =lim,_oe’/(e*+[2]%)". that the extensive numerical evidence for the diverse random
In this way we obtain the important formula matrix ensembles considered in this paper strongly suggests
1 that no subtleties arise and that the factorization theorem
—(d.Indet[---1d.In det[---]) holds in this case.
4 The validity of the factorization theorem can be argued as
follows. Considew; =z andw,=z in Eq.(A12) as indepen-
=m( 2 ViV 8% (z—N) ), (A7) dent complex variables. When both of them are very large,
' one can prove the factorization diagrammatically and no sin-
where we have reinstated the sum over all eigenvalues. fularities would appedthe matrices in the denominators are
remains to show tha¥;;(V~1);; =(R|R)(L;|L;). Using any then invertiblg. Thus both sides of EqA12) are equal and

orthonormal baside;} and the decompositiof2), we see _holomorphic inw; andw, near infinity. For fi_xeds (and this_
that the linear transformatiod satisfying is what we need we see that the matrices in the denomina-

tors are invertible for someetdependentneighborhood of
the diagonalv, =w,. Therefore, no singularities are encoun-

-1 —
U MU_% e (ed (A8) " tered and both sides of E§A12) are holomorphic in this
neighborhood. By the identity theorem since they are equal
can be written explicitly as near infinity and holomorphic, they are equal everywhere.

Therefore, the factorization E¢A12) should hold for any.
We note that in all cases where singularities for coincid-
U= ; IRi{e, ing points do appear in theN/corrections to a factorization
(A9) of the form (G(z)G(z2))=(G(2))(G(z)), the singularities
are associated with inverting a singular matrix, and occur for
v i=ytu=> le (R Rn){(enl. zlying in (or at the edge ofthe spectrum. In our case tlaé
n regularizes such a possible singularity.
From the definition¢8) and(9), the off-diagonal Green’s

From the last equation we infer ) . S
functions have the following expression:

Vi '=(e|V e =(RiIR). (A10) . )
S et S L) s 0 T ) s
%(aflndet[-n]aflndet[--~]) %:<_i”m 1 € >
o N (z= M) (2= M)+ €
= 7| 20 (LIL)X(RIR)8D(z=\)) | =7NO(2), Hence
(A11) -
which completes the proof of E¢AL). NO(Z): ~ YaaYaa (AL4)

We would like to stress that until now we have not used
the largeN arguments in deriving this formula. Therefore, which is just Eq.(7).
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APPENDIX B: GENERALIZED BLUE’'S FUNCTION second(holomorphig solution of Eq.(B7) is valid, giving
The generalized Blue’s functiof#,5] is a 2x2 matrix- eGﬂ(;)g;éI/(za This reproduces the salient features of Ginibre’s
valued function defined by A straightforward generalizatiof4] using the measure
Z | [9!10]
€
Buxzu=z=&€ E)’ (B1)
mAﬂ¢M~w%— ZTNNMMFTRwWMJdM
whereg was defined in Sec. Il anedwill be eventually set to 1= (BY)
zero. This is equivalent to the definition in terms of the self-
energy matrix, leads to the results for the elliptic ensemble with
BG)=3+G1, (B2) P
g :—1
wherel, is a 2x 2 self-energy matrix expressed as a function g2
of a matrix-valued Green’s function. The addition law for the
generalized Blue's functions reads %Zaqq, (B10)

Z=By(G)+By(9) =G, (B3) (1+72)|z|2~27ReZ2— (1— 12)?

(1-7%)?

GaaGaa=
in analogy to the original construction by Zg¥7] for Her- davaq

mitian matrices.
Note that the measur@®9) leads to nonvanishing cumulants
1. Ginibre’s ensemble (MapMap)=1/N and{( MM,y =7/N. In particular, 7=

S . —1 corresponds to anti-Hermitian matrices, explaining the
Ginibre’s ensemblg8] could be viewed as a sum of Her- flips of the signs in the tilted variables above.

mitian and anti-Hermitian Gaussian ensembles, with the
original width suppressed by2 in relation to the original
width of the complex Gaussian ensemble. The generalized
Blue's function for the Hermitian part is simp[y]

2. Two-level deterministic Hamiltonian
plus Ginibre’s ensemble

Since the deterministic Hermitian Green'’s function for the

Br(A)=3A+ A1 (B4)  two-level Hamiltonian is

The generalized Blue’s function for the anti-Hermitian part 1 1

is [4] Go(D)=5| =2+ 5] (B11)
Br(A)=3A+A71, (B5  the corresponding generalized Green's function for this

Hamiltonian reads
where we used the notation
Go(2)=3[(Z—aly) '+ (Z+aly '] (B12)

- [—1 0 1 0
A=( 0 1>A(0 _1)- (B6)  with 1, denoting the two-dimensional identity matrix. Sub-
stituting in Eq.(B12) Z— Bp(G), we obtain
1 i7ati ; _ _
The factor; comes from the normalization of the width, and G=[Bp(G) —aly] L4 [Bo(Q)+al,] 1}' (B13)

the extra signs reflect on the anti-Hermitian correlations of

:h_e ][natr;x elements. The addition law now reditisthe ma-  The addition law for the generalized Blue’s functions reads
rix form

- B(A)=Bp(A)+Bg(A)— A, (B14)
Z=G"'+3[G+3]. (B7)
where the generalized Blue’'s function for Ginibre’s en-
The nontrivial(nonholomorphic solutionreads semble was constructed above, i.Bg(A)=A4"1+1/2(A
- + A). Substituting in Eq(B14) A—G(Z), we infer the re-
_ ( z VZ°—1 88) lation

V7=t z ' 5

& Z=Bp(9)+3(G+9). (B15)

The domain of eigenvalues is determined by the conditior]:
Gqq=0, for which the block structure decouples leading to
holomorphic and antiholomorphic copies. For this ensEmbIe, G=1(Z—Y(G+T)—al,] +[ 2— 1(G+T) +al] !
this is simply a circle|z|?=1. Inside the circleG,q(z,2) =2{(Z72(rG)mal] T[22 (GH0) Tal,) (IB‘}iG)
=z (upper left corner ofj). The constant density of eigen-

values follows from Gauss’ lawl0). Outside the circle, the Solving this matrix equation, we arrive at

rom Egs.(B13) and (B15) we get the final equation,
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GaaGaq=12?+a%— 3(1+ V1+4a%(z+2)?),

2a%(z+2)

Gaa=2—

—, (B17)
1+ V1+4a%(z+72)?

gﬁzaqq-

3. Open chaotic scattering
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X il m g
797z 2lg "y 1oy
% 1( g m 1\2 B19
Godloi=7 "2l 1=gy "y o) “1mgy B
Yaq= Yaa:

where z=x+iy. Gauss’ law leads to the spectral density
[12]

Since the addition law for open chaotic scattering was

formulated by us in previous publicatiohd], we will be

brief and refer to the original papers for details. The addition

law reads
Z=m(1-T¢) T+g+¢ %, (B18)

wherem=M/N andI"=diag(—ig,ig). Solution of the ma-
trix equation(B18) leads to

2

9
(1-gy)?’

where E,=2Reg,q and Ey= —2ImG,,. For completeness
we mention that conditio,,=0 reproduces the results by
Haake, Sommers, and co-workéd®] for the boundary of
eigenvalues in open chaotic scattering.

- m
A7v(x,y)=divE=1+ - (B20)
y
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