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Correlations of eigenvectors for non-Hermitian random-matrix models
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We establish a general relation between the diagonal correlator of eigenvectors and the spectral Green’s
function for non-Hermitian random-matrix models in the large-N limit. We apply this result to a number of
non-Hermitian random-matrix models and show that the outcome is in good agreement with numerical results.
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I. INTRODUCTION

Recently, a number of new results for non-Hermiti
random-matrix~NHRM! ensembles were obtained~see, e.g.,
@1–5# and references therein!, reflecting on the rapidly grow-
ing interest in properties of NHRM in several areas of ph
ics. In a recent paper@6#, Chalker and Mehlig have pointe
out the existence of remarkable correlations between left
right eigenvectors associated with pairs of eigenvalues ly
close in the complex plane. Such effects do not exist
Hermitian ~more generally normal! random-matrix models
since in this case the left and right eigenvectors coinc
Some observables related to the eigenvector propertie
non-Hermitian random-matrix models have been introdu
and studied numerically in@7#. Chalker and Mehlig@6# ob-
tained analytical formulas~in the large-N limit, where N is
the size of the NHRM! for correlations between left and righ
eigenvectors in the case of Ginibre’s ensemble@8#. However,
an efficient calculational scheme for the simplest~and per-
haps physically more transparent! one-point functionO(z)
was lacking. In this paper we prove a simple relation stat
that the correlator between left and right eigenvectors co
sponding to the same eigenvalue is exactly equal, in
large-N limit, to the square of the off-diagonal one-poi
Green’s function@4# for non-Hermitian eigenvalues. The la
ter is readily calculable for a wide variety of NHRM en
sembles. We illustrate our observation in a number
NHRM models and show that it agrees with numerical c
culations.

The present results can be used to study the inter
between reorganization of the left and right eigenvectors
structural changes in the complex spectrum. In the simp
non-Hermitian model—Ginibre’s ensemble~or generaliza-
tions thereof@9,10#!—the density of complex eigenvalues
constant, filling uniformly the circle~ellipse! in the complex
plane. This model and its variants do not have external
rameters, which could induce structural changes~‘‘phase
changes’’! in the average eigenvalue distribution, e.g., t
changes from simply to multiply connected domain of eige
values. In order to study these more complex phenomena
has to consider, e.g., the model for open chaotic scatter
PRE 601063-651X/99/60~3!/2699~7!/$15.00
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where at large couplings~strong dissipation! the eigenvalue
distribution splits into two disconnected islands, reflecting
the separation of time scales@11,12#. One island correspond
to short-lived resonances, while the other corresponds
long-lived ~almost classical! trapped states@13#. It is known
in this case that the reorganization of the eigenvalues is
lowed by some reorganization of the eigenvectors@7#. In
particular, the norm of the right states is sensitive to
distribution of resonances@7#.

In Sec. II, we introduce the notations and summarize
main results for the eigenvector correlators in the case
Ginibre’s ensemble@8#, as established recently by Chalk
and Mehlig@6#. In Sec. III, we present our main result an
apply it to several NHRM models with direct comparison
numerical results. Our analysis relies on novel techniques
NHRM models discussed by some of us@4#. A summary of
our results is given in Sec. IV, and a number of techni
details can be found in the Appendixes.

II. GINIBRE’S MATRIX MODEL

Ginibre @8# has introduced a Gaussian ensemble of g
eral complex matricesN3N, i.e., matrices distributed with
the probability

P~M!dM; exp~2N Tr M M †!dM ~1!

giving nonvanishing cumulantŝMabM̄ab&51/N. The ei-
genvalues are uniformly distributed on a unit disk centered
the origin of the complex plane. In Appendix B, we provid
a short derivation of this result and others using~matrix-
valued! Blue’s functions@4,5#. Since the matrices are com
plex ~non-Hermitian!, there exists a biorthogonal set of righ
~R! and left ~L! eigenvectors, so that

M5(
a

lauRa&^Lau,

~2!

M †5(
b

l̄buLb&^Rbu,
2699 © 1999 The American Physical Society
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where^LauRb&5dab . Chalker and Mehlig@6# have studied
the following eigenvector correlators:

O~z!5K 1

N (
a

Oaad~z2la!L ,

O~z,w!5K 1

N (
aÞb

Oabd~z2la!d~w2lb!L ,

~3!

whereOab5^LauLb&^RbuRa&. The main results of their pape
are exact expressions forO(z,w) and forO(z) in the case of
Ginibre’s ensemble. ForN@1,uz2wuÞ0, wherez,w are ly-
ing within the unit circle

O~z,w!52
1

p2

12zw̄

uz2wu4
. ~4!

For uz2wu→0,

O~z,w!micro52
N2

p2

12uZu2

uvu4
@12~11uvu2!exp~2uvu2!#,

~5!

where Z5(z1w)/2 and v5AN(z2w). The diagonal cor-
relator reads

O~z!5
N

p
~12uzu2!. ~6!

Whereas the calculation of the ‘‘wide’’ eigenvector corre
tors O(z,w) @like Eq. ~4!# in many cases of NHRM is
straightforward, using, e.g., non-Hermitian diagrammat
@4#, the calculation of the ‘‘close’’ eigenvector correlato
O(z2w)micro and the diagonal correlatorsO(z) is techni-
cally involved. In practice, it seems that explicit calculatio
in the microscopic limit are possible only in the cases wh
the spectrum of NHRM possesses an azimuthal~rotational!
symmetry. In the next section we provide a general form
for the diagonal eigenvector correlatorO(z) in terms of the
spectral one-point Green’s function.

III. FORMULA AND RESULTS

The main result of this paper reads

O~z!52
N

p
Gqq̄Gq̄q . ~7!

HereGqq̄ andGq̄q are off-diagonal elements of the genera
ized (232) spectral Green’s functionG @4#,

G5S Gqq Gqq̄

Gq̄q Gq̄q̄
D . ~8!

The elementsGab are defined as tracesGab5(1/N)Tr NĜab of
the N3N blocks of the generalized resolvent@4#,

Ĝ5S Ĝqq Ĝqq̄

Ĝq̄q Ĝq̄q̄
D 5K S z2M i e1N

i e1N z̄2M †D 21L , ~9!
-

s

n

a

where 1N is the N-dimensional identity matrix and̂ & de-
notes the averaging over the pertinent ensemble of ran
matricesM. In comparison to the original work@4#, we have
chosen here purely imaginary infinitesimal values in the o
diagonal block. This way guarantees that the mathemat
operations performed in the proof of Eq.~7! are well-defined.
The result~7! follows from the more general formula~A11!
and the assumption that no subtleties arise in the factor
tion theorem when interchanging the limitsN→` and e
→0 ~cf. Appendix A!.

The spectral density follows from Gauss’ law@10#,

n~z,z̄!5
1

p
] z̄ Gqq~z,z̄!, ~10!

which is the distribution of eigenvalues ofM. For Hermitian
M, Eq. ~10! can be nonzero only on the real axis. Ase
→0, the block structure decouples, and we are left with
original resolvent. Forz→1 i0, the latter is just a measure
ment of the real eigenvalue distribution.

For non-HermitianM, ase→0, the block structure doe
not decouple, leading to a nonholomorphic resolvent for c
tain two-dimensional domains on thez plane. For more tech-
nical details we refer to the original work@4#, or recent re-
views @14,15#. Similar constructions have been propos
recently in@5,16#.

The right-hand side of the relation~7! is usually given by
a simple analytical formula. Technically, the most efficie
way of calculating the off-diagonal components of t
Green’s functions is to use the generalized Blue’s funct
technique@4,5#. In Appendix B we provide a pedagogica
derivation of some of the results below; for others we refer
the original papers.

For Ginibre’s ensemble we immediately get~cf. Appendix
B!

O~z!Ginibre52
N

p
~Azz̄21!25

N

p
~12uzu2! ~11!

in agreement with Chalker and Mehlig@6#. For the elliptic
ensemble@9,10#, using the off-diagonal elements from Ap
pendix B, the diagonal correlator reads

FIG. 1. Eigenvector correlatorO(z501 iy), generated from an
elliptic ensemble of 53105 matrices of size 20~crosses!, an en-
semble of 105 matrices of size 40~stars! and size 100~boxes! ver-
sus the analytical correlator2Gq̄qGqq̄ , for t50.5 ~left! and t
50.7 ~right!.
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FIG. 2. ‘‘Ginibre1deterministic’’ eigenvector
correlator O(z501 iy), generated from an en
semble of 105 matrices of size 60~crosses! versus
the analytical correlator2Gq̄qGqq̄ , at a50.5
~left!, a51 ~center!, and the correlatorO(z5x
1 i0) at a52 ~right!.
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O~z!elliptic5
N

p

1

~12t2!2
@~12t2!2

2~11t2!uzu212t Rez2#. ~12!

In Fig. 1, we present numerical results generated from c
puter simulation of eigenvectors for the elliptic ensem
with t50.5 andt50.7 and different size of the matrix,N,
versus the analytical prediction~12!. The results are satisfac
tory. The figure provides also a rough estimation of fini
size effects. We note that numerical simulations of eigenv
tor correlations are time consuming, hence the utility of
result ~7!, where the right-hand side is straightforward
calculate.

The models considered above have constant densit
complex eigenvalues, and the domain of eigenvalues is s
ply connected~circle or ellipse!. Below, we consider a toy
model, where the domain could split into two disconnec
domains at some critical value of the external parame
Also the distribution of eigenvalues is nonuniform. The si
plest non-Hermitian model of this kind is Ginibre’s rando
Hamiltonian plus a two-level deterministic Hamiltonia
with N/2 levelsa and N/2 levels2a. ~To our knowledge,
this model was first considered by Feinberg and Zee, us
their hermitization method@5#.! Using the addition law for
the generalized Blue’s function, we easily obtain all the co
ponents of the matrix-valued Green’s functionG ~cf. Appen-
dix B!.

Using the relation~7!, we predict

O~z!G1D52
N

p
$uzu21a22 1

2 @11A114a2~z1 z̄!2#%.

~13!

We note that the valuea51 is the critical one, when the
single island of eigenvalues splits into two. Numerical sim
lations for this ensemble are shown in Fig. 2. The solid l
is the analytical result, the crosses are the numerical res
calculated for the linez501 iy . The diagonal eigenvecto
correlatorsO(z) inside the islands follow the distribution
determined by the off-diagonal components for the spec
Green’s function. We also note that the eigenvector c
relator follows precisely the boundary shape of the eigen
ues. This is expected, since the conditionuGqq̄u50 deter-
mines @4# the regions in the complex plane separating
holomorphic and nonholomorphic components of the sp
tral Green’s function~The shape of the eigenvalue domai
for NHRM models can be inferred from associated Herm
ian models using conformal mapping@4#. This points to yet
another relationship between the eigenvalues and eigen
tors of Hermitian and non-Hermitian models.!
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Finally, we consider the case of open chaotic scatter
As an illustration we choose the classical result of Haa
Sommers, and co-workers@12#, based on the Mahaux
Weidenmu¨ller @11# microscopic picture for nuclear reaction
In brief, the model is generically described by a no
Hermitian Hamiltonian of the form

H2 igVV†, ~14!

whereH is a random Gaussian~orthogonal! N3N matrix,
while V is anN3M random matrix@12#. HereN is a number
of discrete states andM,N is a number of the continua. Th
model was solved@12# in the limit N→`, M→`, m[M /N
fixed. Using the results from Blue’s function techniques~cf.
Appendix B!, we predict the analytical behavior for the co
relatorO(z) for this model as

O~z!5
N

p F 1

12gy
2

x2

4
2

1

4 S g

12gy
1

m

y
1

1

gD 2G ~15!

with z5x1 iy . In Fig. 3 we compare this result to a nume
cally generated ensemble of eigenvectors. We would like
note large finite-size effects at the edges of the islands.

Since in this model a change in the parametersg and m
can generate structural changes in the distribution of eig
values, it is interesting to study whether the splitting of t
‘‘islands’’ is accompanied by some distinct behavior of t
eigenvector correlators.

In Fig. 4 we plot the analytical result~15!, normalized by
the spectral densityn(z,z̄) ~cf. Appendix B!, as a function of
x and y, wherez5x1 iy . For the case considered here (m

FIG. 3. Scattering model eigenvector correlatorO(z501 iy)
generated from an ensemble of 105 matrices of size 60~crosses! and
of size 120~boxes! with m50.25, versus the analytical correlato
2Gq̄qGqq̄ , at different values of the coupling constantg.
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50.25), the value of the critical coupling isg54.44. @Gen-
erally, gcrit

2 5(12A3 m)23 @12#.# We observe a strong reorga
nization in the distribution of the average ‘‘norm’’ of eigen
vectors in the vicinity of the critical coupling.

We have not taken up in this paper the issue of w
eigenvector correlatorsO(z,w). For the cases considere
here, these correlators are readily constructed using
NHRM diagrammatic Bethe-Salpeter equations@4#, as noted
by Chalker and Mehlig@6#. In most cases, however, the r
sulting final formulas are rather lengthy. We note that
knowledge ofO(z,w) in the regimez2w;O(1) does not
suffice to determineO(z) through the sum rules@6# originat-
ing from the biorthogonality of the left/right eigenvector
Hence the relevance of the present investigation.

IV. SUMMARY

We have established a relation between the diagonal
relator of eigenvectors and the off-diagonal elements of
one-point spectral Green’s function for general ensemble
NHRM models. We have appplied this result to a number
NHRM models and checked its validity against numerica
generated results. Our observation accounts for part of
eigenvector correlations established recently by a numbe
authors@6,7#. Our result generalizes to non-Hermitian e
sembles with real, complex, or quaternionic components
well as non-Hermitian ensembles with additional symme
~e.g., chiral NHRM!. In this last case, however, non
Hermitian diagrammatic techniques have to be used ins
of the versatile method of Blue’s functions.

Finally, we point out the possibility of relating the eige
vector correlators to the eigenvalue correlators in the mic
scopic limit. This issue and others will be discussed el
where.
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APPENDIX A: PROOF OF EQ. „7…

We prove first the following representation forO(z):

lim
e→0

K Tr
e

~z2M!~ z̄2M †!1e2
Tr

e

~ z̄2M †!~z2M!1e2L
5pNO~z!. ~A1!

Below we use Tr lnA5 ln detA, and the fact thatM can be
diagonalized by anonunitary transformationU, U21MU
5diag(l1 , . . . ,lN). IntroducingV5U21U21† we get

Tr
e

~z2M!~ z̄2M †!1e2

5
1

2

d

de
ln det@~z2l i !Vik~ z̄2l̄k!1e2Vik#

[ 1
2 ]e ln det@•••#. ~A2!

Using this representation, we note thatO(z) is zero in the
limiting procedure, unlessz is close to any~say l1) of the
eigenvalues ofM. If this happens, we use the parametriz
tion z2l15eu exp(if) with u;O(1). Of course we get ad-
ditional ~similar! contributions whenz is close to the other
eigenvaluesl i . For notational simplicity we will now con-
sider only the case ofl1, adding the remaining contribution
in Eq. ~A7!.

Using Laplace’s expansion for the first row of the dete
minant in Eq.~A2!, we arrive in thee→0 limit,

1
2 ]e ln det@•••#5

1

e

1

11u2
detW2

V11detW1

, ~A3!

with W1 being the matrix (z2l i)Vik( z̄2l̄k) without the first
row and column and (W2) i 11,k115(W1) ik , (W2)1,k5( z̄
2l̄k)V1k , (W2) i ,15(z2l i)Vi1, and (W2)115V11.

From Laplace’s expansion

detW15detV8 )
i 52,N

~z2l i !~ z̄2l̄ i !,

~A4!

detW25detV )
i 52,N

~z2l i !~ z̄2l̄ i !,

the ratio of the determinants detW1 /detW2 is simply
(V21)11. In the above,V8 is the minor ofV left after cross-
ing out the first row and first column. In this way we obta

1

2
]e ln det@•••#5

1

e

1

11u2
1

V11~V21!11

. ~A5!

e
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The determinant corresponding to the second trace in
~A1!, with (z2M) and (z̄2M †) interchanged, is obtaine
by substitutingV↔V21 and hence is given by exactly th
same formula.

Therefore,

1

4
^]e ln det@•••#]e ln det@•••#&

5K 1

e2

1

S 11u2
1

V11~V21!11
D 2L

5
e→0

^pd (2)~z2l1!V11~V21!11&, ~A6!

where we used the representation for the complex Dirac d
pd (2)(z)5 lime→0e2/(e21uzu2)2.

In this way we obtain the important formula

1

4
^]e ln det@•••#]e ln det@•••#&

5pK (
i

Vii ~V21! i i d
2~z2l i !L , ~A7!

where we have reinstated the sum over all eigenvalue
remains to show thatVii (V

21) i i 5^Ri uRi&^Li uLi&. Using any
orthonormal basis$ei% and the decomposition~2!, we see
that the linear transformationU satisfying

U21MU5(
k

lkuek&^eku ~A8!

can be written explicitly as

U5(
k

uRk&^eku,

~A9!

V215U†U5(
k,n

uek&^RkuRn&^enu.

From the last equation we infer

Vii
21[^ei uV21uei&5^Ri uRi&. ~A10!

Similar reasoning leads toVii 5^Li uLi&.
This yields

1

4
^]e ln det@•••#]e ln det@•••#&

5pK (
i

^Li uLi&^Ri uRi&d
(2)~z2l i !L [pNO~z!,

~A11!

which completes the proof of Eq.~A1!.
We would like to stress that until now we have not us

the large-N arguments in deriving this formula. Therefor
q.

lta

It

Eq. ~A1! is more general than the relation~7!, and could be
used as a starting point for a systematic study of finite-s
effects or microscopic limit.

To complete the proof of relation~7!, we observe that, in
the large-N limit, we could use the factorization theorem
such that the left-hand side of Eq.~A1! splits into the product
of averages

K Tr
e

uz2Mu21e2
Tr

e

uz2Mu21e2L
5K Tr

e

uz2Mu21e2 L K Tr
e

uz2Mu21e2L . ~A12!

Below we will give some heuristic arguments for the validi
of factorization in this context. However, a full proof woul
require a careful analysis of the interplay between the t
limits N→` ande→0. We will not do this here but remark
that the extensive numerical evidence for the diverse rand
matrix ensembles considered in this paper strongly sugg
that no subtleties arise and that the factorization theo
holds in this case.

The validity of the factorization theorem can be argued
follows. Considerw1[z andw2[ z̄ in Eq. ~A12! as indepen-
dent complex variables. When both of them are very lar
one can prove the factorization diagrammatically and no s
gularities would appear~the matrices in the denominators a
then invertible!. Thus both sides of Eq.~A12! are equal and
holomorphic inw1 andw2 near infinity. For fixede ~and this
is what we need!, we see that the matrices in the denomin
tors are invertible for some (e-dependent! neighborhood of
the diagonalw15w2̄. Therefore, no singularities are encou
tered and both sides of Eq.~A12! are holomorphic in this
neighborhood. By the identity theorem since they are eq
near infinity and holomorphic, they are equal everywhe
Therefore, the factorization Eq.~A12! should hold for anyz.

We note that in all cases where singularities for coinc
ing points do appear in the 1/N corrections to a factorization
of the form ^G(z)G(z)&5^G(z)&^G(z)&, the singularities
are associated with inverting a singular matrix, and occur
z lying in ~or at the edge of! the spectrum. In our case thee2

regularizes such a possible singularity.
From the definitions~8! and~9!, the off-diagonal Green’s

functions have the following expression:

Gqq̄5K 2 i lim
e→0

1

N
Tr

e

~z2M!~ z̄2M †!1e2L ,

~A13!

Gq̄q5K 2 i lim
e→0

1

N
Tr

e

~ z̄2M †!~z2M!1e2L
Hence

p

N
O~z!52Gqq̄Gq̄q , ~A14!

which is just Eq.~7!.
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APPENDIX B: GENERALIZED BLUE’S FUNCTION

The generalized Blue’s function@4,5# is a 232 matrix-
valued function defined by

B @G~Z!#5Z5S z ie

i e z̄
D , ~B1!

whereG was defined in Sec. II ande will be eventually set to
zero. This is equivalent to the definition in terms of the se
energy matrix,

B~G!5S1G 21, ~B2!

whereS is a 232 self-energy matrix expressed as a functi
of a matrix-valued Green’s function. The addition law for t
generalized Blue’s functions reads

Z5B1~G!1B2~G!2G 21, ~B3!

in analogy to the original construction by Zee@17# for Her-
mitian matrices.

1. Ginibre’s ensemble

Ginibre’s ensemble@8# could be viewed as a sum of He
mitian and anti-Hermitian Gaussian ensembles, with
original width suppressed byA2 in relation to the original
width of the complex Gaussian ensemble. The general
Blue’s function for the Hermitian part is simply@4#

BR~A!5 1
2 A1A 21. ~B4!

The generalized Blue’s function for the anti-Hermitian p
is @4#

BiR~A!5 1
2 Ã1A 21, ~B5!

where we used the notation

Ã5S 21 0

0 1DAS 1 0

0 21D . ~B6!

The factor1
2 comes from the normalization of the width, an

the extra signs reflect on the anti-Hermitian correlations
the matrix elements. The addition law now reads~in the ma-
trix form!

Z5G 211 1
2 @G1G̃#. ~B7!

The nontrivial~nonholomorphic solution! reads

G5S z̄ Auzu221

Auzu221 z
D . ~B8!

The domain of eigenvalues is determined by the condit
Gqq̄50, for which the block structure decouples leading
holomorphic and antiholomorphic copies. For this ensem
this is simply a circleuzu251. Inside the circle,Gqq(z,z̄)
5 z̄ ~upper left corner ofG). The constant density of eigen
values follows from Gauss’ law~10!. Outside the circle, the
-

e

d

t

f

n

e,

second~holomorphic! solution of Eq.~B7! is valid, giving
G(z)51/z. This reproduces the salient features of Ginibre
ensemble.

A straightforward generalization@4# using the measure
@9,10#

P~M!dM;expS 2
N

12t2
Tr ~MM †2t ReMM!D dM

~B9!

leads to the results for the elliptic ensemble with

Gqq5
z̄2tz

12t2
,

Gq̄q̄5Ḡqq , ~B10!

Gq̄qGqq̄5
~11t2!uzu222t Rez22~12t2!2

~12t2!2
.

Note that the measure~B9! leads to nonvanishing cumulan

^MabM̄ab&51/N and ^MabMba&5t/N. In particular,t5
21 corresponds to anti-Hermitian matrices, explaining
flips of the signs in the tilted variables above.

2. Two-level deterministic Hamiltonian
plus Ginibre’s ensemble

Since the deterministic Hermitian Green’s function for t
two-level Hamiltonian is

GD~z!5
1

2 S 1

z2a
1

1

z1aD , ~B11!

the corresponding generalized Green’s function for t
Hamiltonian reads

GD~Z!5 1
2 @~Z2a12!211~Z1a12!21# ~B12!

with 12 denoting the two-dimensional identity matrix. Su
stituting in Eq.~B12! Z→BD(G), we obtain

G5 1
2 $@BD~G!2a12#211@BD~G!1a12#21%. ~B13!

The addition law for the generalized Blue’s functions rea

B~A!5BD~A!1BG~A!2A 21, ~B14!

where the generalized Blue’s function for Ginibre’s e
semble was constructed above, i.e.,BG(A)5A 2111/2(A
1Ã). Substituting in Eq.~B14! A→G(Z), we infer the re-
lation

Z5BD~G!1 1
2 ~G1G̃!. ~B15!

From Eqs.~B13! and ~B15! we get the final equation,

G5 1
2 $~Z2 1

2 ~G1G̃!2a12#211@Z2 1
2 ~G1G̃!1a12#21%.

~B16!

Solving this matrix equation, we arrive at
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Gq̄qGqq̄5uzu21a22 1
2 ~11A114a2~z1 z̄!2!,

Gqq5 z̄2
2a2~z1 z̄!

11A114a2~z1 z̄!2
, ~B17!

Gq̄q̄5Ḡqq .

3. Open chaotic scattering

Since the addition law for open chaotic scattering w
formulated by us in previous publications@4#, we will be
brief and refer to the original papers for details. The addit
law reads

Z5m~12GG!21G1G1G 21, ~B18!

wherem5M /N andG5diag(2 ig,ig). Solution of the ma-
trix equation~B18! leads to
-

ys
.

E

in
s

n

Gqq5
x

2
1

i

2 F1

g
1

m

y
1

g

12gyG ,
Gqq̄Gqq̄5

x2

4
1

1

4 S g

12gy
1

m

y
1

1

gD 2

2
1

12gy
, ~B19!

Gqq̄5Ḡqq ,

where z5x1 iy . Gauss’ law leads to the spectral dens
@12#

4pn~x,y!5divEW 511
m

y2
2

g2

~12gy!2
, ~B20!

where Ex52ReGqq and Ey522ImGqq . For completeness
we mention that conditionGqq̄50 reproduces the results b
Haake, Sommers, and co-workers@12# for the boundary of
eigenvalues in open chaotic scattering.
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